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Optimal Linear Estimation of Bounds of Random Variables

By

Peter Cooke

1. Introduction.

Suppose Xi,Xz,...,Xn are independent random variables, each with
density f(x) and distribution function PF(x), where F(x) € (0,1)
only for x ¢ (9,6). Let Y, <Y, < - <Y denote the order
statistics based on Xl,X2,...,Xn. The parameter 6 1is known to be
finite and is the parameter of interest. The large sample inference
for © which follows applies whether or not ¢ is known, though when
® = -0 we will need to assume that the X's have finite second moment
since our estimators are linear functions of the order statistics and
we will compare estimators through their mean squared errors.

When only the r largest observations are used to estimate 6, a

linear estimator is of the form
(1) 6 =Y axX
In section 2 we will show, for fixed r > 2, how the coefficients

81585500058, cCanl be determined so as to yield the estimator of the

form (1) with asymptotically smallest mean sQuared error.



2. Determination of the Coefficients.

It is clear that since we are discussing large sample theory and
the parameter of interest is the upper endpoint of the distribution and
also, since we are basing our inference on the largest few observations,
from a practical point of view we don't need to know the form of £,
but we need to characterize the shape of its upper tail. Thus, as in

Cooke (1979) we will consider the case in which
/v
2) F(y) ~ expl-(ZL) Y as n-w,
n

for which Gnedenko's (1943 ) necessary and sufficient condition is that

for ¢ >0,
14m  LFleyte) /v Lo 4 -t (1-2)
y—=0- l'FZY"'Q) ’ " e

The value Vv = 1 corresponds to densities f(x) which are truncated
at 6; that is, 0 < f() < w. In general, v = 1/(k+l) for a density
which is zero or infinite at 6 and whose first finite, nonzero left
derivative at 6 is its kth 1left derivative.

It is proved in Cooke (1979) that, when Gnedenko's condition holds

and N = ®, for i>1 and i small

D (v+i)

(3) E(Y T

n-1+1) ~ 6" (6-u,)

and, for i >j >1,



) ~ r(v+j) (F(evﬁl 'F (v-?i)}

() S TGy TeH) T T

n-i+1’Yn-j+1
where TI(@) is the familiar gamma function defined by

o0
= [0
r(oz)=f e £ lax for >0 .
0

It follows from (3) that as n -+

. r 5 L (v+1)
5) E(6, =6) ~ 9(i§1 a;-1) - (6-u ) 1§1 = ra(}i) )

r
When 2 a, =1, which we require for 8 to be a consistent
ik n,r

estimator of 6, using (&) and (5) we find, when n - «,

A r r . .
(6) (02, B8, ,-0)" ~ 2 jgl 43 FrRG T2 -

The quadratic form on the right in (6) can be written as a' A a,
vhere g 1is a column vector with elerents 8850 ec 8, and A 1is a

symmetric r x r matrix with (i ,j)th element

L L(evri)r(vig)
ij = TR ()

, i<,

If we let 1 denote the r x 1 vector with each element equal to
1, our problem reduces to finding the vector a which minimizes a' A a
subject to %'L = 1., The minimization is achieved by the vector

a= 1" 2™"1)™" AL and the minimum value of a' A g is (' ATT1)7h.

W



3. Computations.

In the tables to follow we have, correct to three decimal places,
values of the coefficlients of the r largest order statistics for the

minimum mean squared error estimator of 6, which henceforth we denote

by 6 . Also tabulated are some values of ¥ (v) = lim (o=-u )-EE(é\ -9)2.
n,r r S n n,r

The truncation case v =1 is probably the most important case from
a practical point of view, but is singled out here in view of the special

nature of the minimizing coefficients 81855000 580 Gnedenko's condition

1/v

suggests that for y close to 9, 1-F(y) « (6-y) and hence, vhen

v =1, that F(y) is linear in y for y near 6. This corresponds

to a Uniform distribution. If indeed Y

n-r+1’Yn-r+2"°"Yn are the r

largest order statistics from a Uniform distribution with upper endpoint

6 and Yl’Y2""’Y are ignored, then Yn-

n-r and Yn are Jointly

r+l
sufficient for 0, in vwhich case it follows that the minimum mean squared

error estimgtor of 6 will be a linear function of Yn-r +1 and Yn

alone. Thus 8y = 8z = ec =@, g = O when v = 1. The increasing

dependence on Y with decreasing v or, equivalently,

n-r+2’Yn-r45’ AR ]
increasing power of (6-y), is apparent from the tables to follow.

USing (6) With v =1 and a2 = a3 = eee = =0 we easily ind

r-1

that the minimizing coefficients are ay = l+r-l, a, = -r-l and that

the minimum value of yr(l) is 1+r™. Tt follows that 7. (1) cannot
be smaller than 1 for any r > 1 and that a nearly optimal estimator

is obtained with a fairly small value of r.



Table 1

Minimizing Coefficients and Asymptotic Mean Squared Error of
the Optimal Estimator.

v=1/2

i ik - 2 8, ag ag 8 7,(1/2)
2 ) -1 667

5 1.636 273 -.909 .545

4 1.4k .2h0 .160 -.840 L1480
5 1.31h .219 J1h6 .109 -.788 . 138
6 1.224 .20k .136 .102 .082  -.748 108
7 1.157 <193 .129 .09% LOTT .06k -.716 .386

v =1/3

i ! 8 85 2, ag 8 - 7,(/3)
2 2.5 -1.5 . 564
3 1.951 .585  -1.537 ko

b 1.654 Lo6 372 -1.523 373

5 1.463 439 .329 269 =1.501 «330
) 1.328 .398 .299 .24l .210 1,479 .300
7 1.226 .368 276 226 193 JA71 =1.459 277

v = 1/k

r ay a, as ay, ag ag a 7 (/%)
2 3 =2 .532
5 2. 275 . %9 "'2. 182 . )-|-05

L 1.882 .T753 602 -2,237 334
5 1.632 .653 .522 A48 2,255 .289
6 1.456 .583 166 .399 «355  =2.260 .258
7 1.325 .530 2l .363 .323 .29k 2,259 .235



Table 1 (Continued)

Minimizing Coefficients and Asymptotic Mean Squared Error of
the Optimal Estimator.

v =1/5
r a, a, as a, a ag 8, 7r(l/5)
2 3.5 -2.5 .518
3 2.598 1.237 -2.855 384
L 2.117 1.008 LBho -2.96h 313
5 1.811 .863 .719 634 3,027 .268
6 1.598 761 634 . 560 .509  -3,062 236
7 1.439 .685 .571 . 50k .458 J2h 3,082 .213

Although the minimizing coefficients are not given above for

r = 20, except when Vv =1, the following table gives values of neo(v),

where

N 2
E(en r-e)
nr(v) = 1lim —_—

- 2
n - E(en—a)

- A
is the asymptotic efficiency of en relative to Gn r and, as discussed
)

in Cooke (1979), 55 is the estimator of the form

-1 n-1 4 _
Yo+ c(v){Yn—(l—e ) .Z e Yn—i}
i=0
with asymptotically smallest mean squared error and is the best estimator

derived until now. Also tabulated are values of .620(0), where



A
E(en r-e)2
5 (v) = 1lim o
r n-+wo E(Y -9)
n
to illustrate the considersble progress which has been made in finding

better estimators of 6 than Y, since Robson and Whitlock's (196k)

attempt in the truncation case.

Table 2

Efficiencies Relgtive to the Optimal Estimator Based on the 20

Largest Observations and Improvement Over Yn.

v 1 1/2 1/3 1/b 1/5
Moo (V) | <798 - 4ok 357 -257 .252
seo(v) .525 278 .185 143 .120

4,  Estimation of .

When ¢ is known to be finite and is the parameter of interest, for
given r >1 we seek the estimator of the form $ﬁ,r = _2& a,iYi with
asymptotically smallest mean squared error. B

If the lower tail of f is characterized by the constant v in
the way the upper tail is characterized above, then the minimizing coeffi-
cients are precisely those in section 3 since, if Xl’Xz""’Xn are independent
with lower bound ¢ and v characterizes the lower tail of ' f, then
=Xy 2,...,—Xn are independent with upper bound -9 and the upper tail
of the distribution of -Xi is characterized by +v. Finally, the largest
r order statistics based on -Xi,- 2,...,—Xn are the negatives of the

smallest r order statistics based on Xl,Xé,...,Xn.

7
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